
BLOW-UP, HOMOTOPY AND EXISTENCE FOR PERIODIC

SOLUTIONS OF THE PLANAR THREE-BODY PROBLEM

Abstract. Deleting collisions from the configuration space of the planar N-

body problem yields a space with a large interesting set of free homotopy

classes of loops, classes which are encoded by “syzygy sequences” when N =

3. This expository piece centers on the question “ Is every free homotopy

class of loops realized by a periodic solution to the problem?” We report on

the recent affirmative answer [30] for the case of non-zero but small angular

momentum and three equal or near-equal masses. The key tool is the McGehee

blow-up [20] as implemented by Rick Moeckel in the 1980s. After recounting

some history and motivation, about a third of this article exposes the blow-up

method. We use an energy balance under scaling transformations to motivate

McGehee’s blow-up transformation. We give an explicit description of the

blown-up and reduced phase space for the planar N-body problem, N ≥ 3

as a complex vector bundle over [0,∞) × CPN−2. We end by returning to

the angular momentum zero case where we conjecture the answer is ‘no’. We

support this conjecture by recent work of Connor Jackman [17] and of Danya

Rose [40].

1. Introduction

The following theorem inspired much of my work on the N-body problem.

Background Theorem 1. Let (M,ds2) be a compact Riemannian manifold. Then

every free homotopy class of loops on M is realized by a closed geodesic.

If one continuous loop in M can be continuously deformed into another without

leaving M then we say that the two loops are “freely homotopic” 1. Free homotopy

1For those familiar with the fundamental group, we emphasize that the adjective“free” means

that there is no fixed base point through which all loops must pass. The space of free homotopy
classes typically does not form a group, rather it is isomorphic to the set of conjugacy classes of

the fundamental group.
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defines an equivalence relation on loops in M . The resulting equivalence classes are

the free homotopy classes of loops.

To move from Riemannian geometry to the planar three-body problem we re-

place the geodesic equations by Newton’s equations, and the Riemannian manifold

of the above theorem by the configuration space for the planar three-body problem.

This configuration space is the product of three copies of the Euclidean plane. New-

ton’s equations have singularities along the collision variety where two or more of

the bodies collide. Excluding the collision variety from configuration space induces

a large space of free homotopy classes where previously there were none.

Open Question. 1. Is every free homotopy class for the planar Newtonian

three-body problem realized by a collision-free periodic solution?

We address a reduced version of this question , where “reduced” means modulo

the group G of rigid motions of the plane, which is the built-in group of symmetries

of Newton’s equations. Consequently we can “reduce” Newton’s equations to obtain

equations on the quotient of the three-body configuration space by G. We call this

quotient space shape space since its points represent oriented congruence classes

of triangles. See [34] for details and a derivation of the structure of shape space.

Shape space is diffeomorphic to R3. Under this diffeomorphism the collision variety

(modulo G) becomes three rays issuing forth from the origin. The free homotopy

classes of shape space minus collisions are called “reduced free homotopy classes”.

Momentarily we describe how to encode reduced free homotopy classes in a simple

combinatorial way.

We also do not require our solutions are periodic, but rather that they are

“reduced periodic” meaning periodic modulo G. Concretely, if rij denotes the

interparticle distances, i.e. the sides of the triangle formed by the three bodies,

then we insist that these distances for our solutions satisfy rij(t+T ) = rij(t) where

T is the reduced period 2 .

2Strictly speaking, this T may actually be half the reduced period. For example, if after time T
the inital and final triangle are related by a reflection, then after time 2T the two triangles are

the same.
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The reduced free homotopy classes are conveniently encoded in the astronomical

language of “syzygies”. A syzygy is an instant or configuration for which the

three bodies lie in a line. Non-collision syzygies are marked 1,2, or 3, depending

upon which of the three masses lies in the middle at the syzygy instant. Consider

a curve c in the configuration space of the three-body problem which is closed

modulo rotation. Write out its syzygy sequence on the circle. We get a periodic

list of 1’s 2’s and 3’s. The list is subject to the “non-stuttering” cancelation rule:

any time we see a 11, a 22 or a 33 we delete it. We call the resulting sequence

the “reduced syzygy sequence” of the free homotopy class. For example 32 is the

reduced syzygy sequence of 12112321 since 12112321 = 122321 = 1321 = 32 where

the last cancellation arises because the word is written on the circle. It can be

proved that two reduced-periodic collision-free curves represent the same reduced

free homotopy class if and only if their reduced syzygy sequences are equal.

Theorem 1 ((RM)2 [30]). For equal or near-equal masses, and angular momenta

sufficiently small but nonzero, every reduced syzygy sequence, and thus every re-

duced free homotopy class for the planar three-body problem is realized by a reduced

periodic orbit for the Newtonian planar three-body problem.

1.1. My path through the Variational Wilderness. “Look at every path

closely and deliberately. Try it as many times as you think necessary. Then ask

yourself, and yourself alone, one question. [...] Does this path have a heart? ”

–from the preface of the book “Keep the River on your Right”, by Tobias Schnee-

baum; a slight variation on a well-known passage in Carlos Castaneda’s “The Teach-

ings of Don Juan: A Yaqui Way of Knowledge”

The variational proof of the background theorem, theorem 1, proceeds as follows.

Fix a free homotopy class. Define m to the infimum of the lengths of all loops

which realize this class. Choose a minimizing sequence : a sequence of loops in the
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class whose lengths tend to m. Because M is compact, the Arzela-Ascoli theorem

guarantees that the sequence has a convergent subsequence. Call c∗ the loop to

which the subsequence converges. Standard methods from the calculus of variations

now show that c∗ lies in the class and its length m, proving the theorem.

The proof just sketched provides an archetypal example of the direct method

of the calculus of variations in action. I learned it, and loved it, in grad school.

But for me, back in grad school, Celestial Mechanics was the land of old famous

long-dead men, a world of very hard problems of no real interest. I was certain I

would never work in it. I studiously avoided the entire last part of the book by

Abraham-Marsden, since that is the part titled ‘Celestial Mechanics’.

Instead, coming out of grad school, I tried my hand in what was in vogue,

in gauge theory, symplectic reduction, and eventually I was led into problems in

subRiemannian geometry and optimal control where I probably did my first real

serious piece of work. I was led into subRiemannian geometry through the work of

Wilczek and Shapere who had shown that the problem faced by a falling cat when

trying to right herself when dropped from upside down with no angular momentum

can be viewed as a kind of optimal control problem mixed with gauge theory.

I kept simplifying the cat problem until she consisted of three mass points. At

this juncture, I knew I was perilously close to working on the three-body problem

but I studiously avoided actually working on it. In 1995 or 1996 Alan Weinstein,

a mentor of mine in grad school, told me that Wu-yi Hsiang had been looking

into the three-body problem from a perspective very similar to mine: variational,

combined with equivariant differential geometry. Hsiang and I got together in a

cafe on Euclid Avenue in Berkeley one afternoon and spent perhaps three hours

together. His personality is a force of nature. This force and Hsiang’s optimism and

enthusiasm convinced me to begin work on some baby problems within the three

body problem. During that visit, Hsiang posed the reduced version of question 1 ,

and drew pictures on yellow pads of paper which were reminescent of figures 4 and

5 of this paper.
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Very soon after my encounter with Hsiang, I started a seminar at UCSC on the

N-body problem. Chris Golé, who had written a wonderful book on Symplectic

Twist Maps, was visiting UCSC as an assistant professor and attended regularly.

Bill Burke , one of my few real friends on the UCSC faculty, and a physics professor

at UCSC also attended. (Bill would die a few years later at 52 when his pickup

truck was flipped over in a high wind in Hurricane, Utah, as he was driving home

from a Grand Canyon rafting trip.) A month in to our seminar, and Chris Golé took

me aside and told me “Richard, if you are serious about doing work in the N-body

problem then you must go to Paris. You have to visit the Bureau des Longitudes and

talk with Alain Albouy, Alain Chenciner and Jacques Laskar. They do phenomenal

work in mathematical celestial mechanics.”

The next year I had a sabbatical 1997-1998, and my family and I took that

sabbatical year at CIMAT, in Guanajuato, Mexico. While there I began my book

on SubRiemannian Geometry and also invited myself to Paris in the Spring. I

stayed in Paris for 6 weeks that first time and became lifelong friends with the two

Alains and with Jacques.

My conversations with Albouy and Chenciner and eventual collaboration with

Chenciner began slowly, and evolved out of their incredibly careful, thorough, and

exacting referee work of some of my papers for the journal “Nonlinearity”. I will

not repeat the story of how, at the end of the millenium, in December of 1999,

Chenciner and I rediscovered the remarkable figure eight orbit of Cris Moore. (You

can find a version of that story on my web page, for example.) Upon seeing an

early draft of our paper, Phil Holmes told us that his student C Moore had done

numerical based on a similar work six years before us [35]. And Robert MacKay

pointed Chnenciner to an amazing paper of Poincaré, over a century earlier in which

Poincaré [37] used the direct method to answer a variant of question 1. He proved

the existence of a reduced periodic solution in almost every reduced homology class,

provided we replace the Newtonian 1/r2 force law by a 1/r3 “strong-force” law. 3

3For a 1/ra potential, so 1/ra+1 force law, the action of an orbit segment with an isolated collision
is finite if and only if a < 2.
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Figure 1. Slip the circles off the ends....

In addition to his beautiful 3 page paper, I recommend [9] or [5] for history and

details of successes and failures of the variational method applied to the N-body

problem.

The main challenge in getting the direct method of the calculus of variations to

work in a three-body problem is the non-compactness of its configuration space.

Minimizing sequences of loops may leave the configuration space, escaping ‘to infin-

ity’, in their attempts to minimize. See figure 1.1 The most challenging escape to

infinity to prevent is not the ultraviolet escape ( distances between bodies tending

to infinity) but rather the infrared escape : distances between bodies going to zero,

which is to say the possibility that a minimizing sequence of paths converges to a

path in which two or more of the bodies suffer a collision.

After the figure eight work, I continued trying to use variational methods and

geometric perspectives to establish new results for the Newtonian N-body problem.

Our “choreographic” success, my new French, Catalan, and New Jersey friends [12],

and the surprising simplicity and beauty of the variational proof of theorem 1 kept
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me on a 17 year long path through the underbrush of the calculus of variations in

trying to establish some version of Theorem 1. Throughout that time, I worked

almost exclusively in the case of zero angular momentum. The reason I insisted on

restricting to zero angular momentum is that the restriction arises in an extremely

natural way out of the map from configuration space tothrough shape space. One

realizes this projection to be a Riemannian submersion and that being orthogonal

to the fibers (the rotational orbits of a single triangle) is equivalent to having

zero angular momentum, and minimizers between orbits must have zero angular

momentum. In physical terms, if you fix a curve on shape space, and minimize the

length of all realizations of this shape curve by curves in configuration space, then

the resulting minimizers are exactly those curves which project onto the given curve

and having angular momentum zero.

In retrospect, the long variationally based path I took was a path with a heart.

But it did not bring me closer to a resolution of Question 1.

1.2. Breakthrough. I had a sabbatical in Portland in the Spring of 2014. I had

largely given up on making progress on Question 1 and decided that it was time that

I performed some numerical experiments to get some idea of whether the answer was

yes or no. To do this, I set myself the task of sorting through orbit segments for the

zero-angular-momentum-equal-mass-three-body problem, by numerically integrat-

ing a large variety of initial conditions up until they generated a syzygy sequence

of some fixed length N. I planned to take this as “raw data” and look for gaps –

certain nonoccurences of subwords – in the resulting length N words. I figured I

could get up to words of length N=10, by shooting from the collinear plane in shape

space. I rediscovered for the fourth or fifth time that programming and numerical

analysis are not paths with a heart for me. Within a month I could see that I would

need more than a year to complete my appointed task. I would need help! At first

I tried to enlist the aid of my old kayak friend and life-long Fortran programmer

Michael Schlax who was living nearby in Corvalis. But it soon became clear that

this would be too slow- -Michael was a geophysicist and statistician by training, not
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a mathematician. And I was not enjoying learning Fortran. So I decided to seek

out my old friend Carles Simó and get one of his students, or even better, him, to

aid me in my numerical searches. Carles Simo has a reputation as one of the most

inventive, careful numerical analysts working in celestial mechanics. He is also a

mathematician and a friend. So we can talk. My subRiemannian book had gotten

me invited to a trimester at IHP in Paris for the Fall quarter of 2014 and I took

advantage of that trip to invite myself to spend time with Carles in in Barcelona.

The first afternoon I first met with CarlCarles es and explained Question 1. He

looked at me with his piercing eyes and asked “Richard, why do you care?”

I had been working on this problem 17 years. Carles’ s question was a stab to

my heart! It knocked the breath out of me. But I knew Carles did not mean to

hurt – he is simply a direct man who does not waste time or mince words. So

I tried to explain why I cared. Carles listened. The next morning when we met

again, he began “Richard, if what you think is true about this Question, (that all

free homotopy classes are realized) then there has to be a dynamical mechanism.”

With those few words I switched paths! I abandoned the variational path, and

asked myself what “dynamical mechanisms” do I know? What mechanisms which

work for general Hamiltonian systems? I realized I knew only two “dynamical

mechanisms” : that of KAM torii and that hyperbolic tangles. KAM would be of

no help. But Moser, in his famous book [36], had shown clearly how tangles yield

symbolic dynamics in a celestial mechanics problem, the Sitnikov problem.

I wracked my brain. Who had done similar work, but for the full three-body

problem? Rick Moeckel! And Rick had been my main colloborator these last three

years! I reread some of Rick’s papers [ ([27], [23], and [29])] from the 1980s. I

discovered that back then he had essentially solved my problem! A few small gaps

remained to fill, but Moeckel had done the huge bulk of the work nearly 30 years

earlier.

The goal of the remainder of this paper is to explain what Rick did, how we used

it , and try to motivate his work and in particular the McGehee blow-up.
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2. Background: Equations and Solutions.

2.1. Equations. The classical three-body problem asks that we solve the system

of non-linear ODEs:

(1)

m1q̈1 = F21 + F31

m2q̈2 = F12 + F32

m3q̈3 = F23 + F13.

where

(2) Fab = Gmamb
qa − qb
r3ab

is the force exerted by mass ma on mass mb and

rab = |qa − qb|, qa ∈ Rd, and ma, G > 0.

Here a, b = 1, 2, 3 label the bodies. The dimension d for us will be 2. The standard

value is d = 3.) The ma represent the values of point masses whose instantaneous

positions are qa(t). The double dots indicate two time derivatives: q̈ = d2q
dt2 . The

constant G is Newton’s gravitational constant and is physically needed to make

dimensions match up. Being mathematicians, we can and do set G = 1.

2.2. Solutions of Euler and Lagrange. The only solutions to the three-body

problem for which we have explicit formulae were found by Euler [14] and Lagrange

[19] in the last half of the 18th century. See figures 2, 3. Their solutions are central

to our story.

For Lagrange’s solution, place the three masses at the vertices of an equilateral

triangle and drop them: let them go from rest. They shrink homothetically towards

their common center of mass, remaining equilateral at each instant. The solution

ends in finite time in triple collision. This motion forms half of Lagrange’s triple

collision solution. To obtain the other half of Lagrange’s solution use time-reversal

invariance to continue this solution backwards in time. In the full solution the
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three masses explode out of triple collision, reach a maximum size at the instant at

which we dropped the three masses, and then shrink back to triple collision, staying

equilateral throughout. A surprise is that the Lagrange solution works regardless

of the mass ratios m1 : m2 : m3.

For Euler’s solutions, place the masses on the line in a certain order: qi < qj < qk

so as to form a special ratio qk−qj : qj−qi. (This special ratio depends on the mass

ratios and also the choice of mass mj on the middle and is the root of a fifth degree

polynomial whose coefficients depend on the masses.) Again drop them. They stay

on the line as they evolve and again the similarity class of the (degenerate) triangle

stays constant: this ratio of side lengths stays constant. ( In case the two masses

at the ends are equal then the special ratio is 1 : 1: place mj at the midpoint of mi

and mk. )

The solutions described are part of a family of explicit solutions. For every one

of the solutions in these families the similarity class formed by the three masses

stays constant in time during the evolution. Each mass moves on its own Keplerian

conic with the center of mass of the triple as focus, the solutions described above

being the special case of degenerate (colinear) ellipses. We derive these families

analytically in section 4.3.1 below.

All together these solutions form five familes. The corresponding shapes are

called “central configurations”. The Lagrange solutions count as two, one shape

for each orientation of a labelled equilateral triangle. The Euler solutions count as

three, one for each choice of mass in the middle.

For almost all (Newtonian) time the solutions of theorem 1 are very close to one

of the three Euler solutions. The Lagrange solutions act as bridges between various

Eulers.

3. Shape sphere. Blow-up and reduction, first pass.

A basic aid to understanding the planar three-body problem is the shape sphere,

a two-sphere whose points represent oriented similarity classes of triangles. At
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Figure 2. A Lagrange Solution.

 

Figure 3. An Euler Solution.
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each instant of time the three bodies form the vertices of a triangle. Call two

triangles “oriented similar” if one can be brought to the other by a composition

of translations, rotations, and scalings. The resulting space of equivalence classes

forms the shape sphere. See figure 4. This sphere has 8 marked points, the 5

central configurations just described L+, L−, E1, E2, E3 and The 3 binary collision

points labelled B12, B23, B31 . The sphere’s equator represents the space of collinear

triangles. The 3 binary collision points, and 3 Euler central configurations lie on

this equator, interleaved so as to be alternating.

E1

E2

E3

B12

B13

B23

L+

L-

Figure 4. The shape sphere. Lagrange points, Euler points, and
collision points marked. The equator consists of collinear triangles.
figure courtesy of Rick Moeckel

The earliest occuring picture of the shape sphere in the context of celestial me-

chanics with which I am familiar is [24] . You will find a detailed exposition of the

shape sphere and its relation to the three-body problem in [34].

We summarize how the shape sphere arises out of the three-body problem. The

configuration space for the three-body problem, with collisions allowed, is C3 with a

point q = (q1, q2, q3) ∈ C3 representing the 3 vertices of the triangle - the positions

of the 3 bodies. We have identified C with R2 in the standard way: x + iy ∈ C

corresponds (x, y) ∈ R2. A standard trick from Freshman physics allows us to
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restrict the problem to the center-of-mass zero subspace:

Ecm = {q ∈ C3 : m1q1 +m2q2 +m3q3 = 0} ∼= C2 ⊂ C3.

(See the beginning of section 5 below.) In Ecm the binary collision locus become

three complex lines which intersect at the origin 0. The origin represents triple

collision. The masses endow C3 with a canonical metric called the “mass-metric”

(eq. (4)) and relative to that metric the distance from triple collision is given by r

where

r2 = m1|q1|2 +m2|q2|2 +m3|q3|2.

(See eq. (8).) Take the sphere

{r = 1} := S3 ⊂ C2 ∼= Ecm.

Because the three-body equations are invariant under rotations they descend to

ODEs on the quotient of C2 = Ecm by the group S1 of rotations. This quotient

space is topologically an R3. We call this R3 “shape space”. To understand this

quotient note that the rotation action leaves r unchanged but moves points on S3

around according to (Z1, Z2) 7→ (uZ1, uZ2), u ∈ S1 ⊂ C. (Here Z1, Z2 are any

complex linear coordinates for Ecm.) This is the circle action used to form the

Hopf fibration:

Hopf : S3 → S3/S1 = S2 = shape sphere .

Points of the quotient R3 represent oriented congruence classes of triangles: planar

triangles modulo translation and rotation, but not scaling. Express R3 in spherical

coordinates (r, s), s ∈ S2. Then the origin r = 0 corresponds to triple collision. A

point s on the sphere represents a ray rs, r ≥ 0 of triangles all having the same

shape. The collision locus C = {r12 = 0 or r23 = 0 or r31 = 0} is represented by

the three rays corresponding to the three binary collision points B12, B23, B31 ∈ S2.

Newton’s equations break down at triple collision r = 0. McGehee blow-up is a

change of variables ( equations (12)) which converts Newton’s equations to a system
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of ODEs which is well-defined when r = 0. The locus r = 0 in the new variables

is called “the collision manifold” and forms a bundle over the shape sphere. The

blown-up system of ODEs has exactly 10 fixed points, all on the collision manifold,

a pair of fixed points lying over each of the five central configurations. For a chosen

central configuration, one element of the pair corresponds to the homothetic arc

incoming to triple collision, as in our original description of the Lagrange solution,

while the other element of the pair corresponds to the initial segment of that solution

which explodes out from triple collision.

The 10 fixed points on the collision manifold have stable and unstable manifolds,

parts of which stick out of the collision manifold, and which intersect in complicated

ways, as per the Smale Horseshoe and heteroclinic tangles. See figure 6. Moeckel

investigated these manifolds and their relations in seminal works [28], [23], [25],

[24], [27], and [29] where he proved existence of “topological heteroclinic tangles”

between them. Simó and Suslin had also proved existence of connections between

the various collision manifolds with careful numerical evidence in ??.

One finds the following abstract graph

aL−@
@
@

�
�
�

aE2a E1 aE3�
�
�

@
@
@
aL+

in several of these papers ([27], p. 53, Theorem 1′. Figure 2 of [29] becomes our

graph after deleting the vertices labelled with B’s and s edges incident to these B’s.)

Moeckel’s theorem in [27], based on the intersections between stable and unstable

manifolds of the 10 fixed points, asserts that all paths in this graph are “realized”

by solutions to the three-body problem provided the angular momentum, energy

and masses are as per theorem 1. Embed this graph in the shape sphere as indicated

by figure 5. Call the embedded graph the “concrete connection graph”.
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The dynamical relevance of the concrete connection graph has to do with the

Isosceles three-body problem. When two of the masses are equal, say m1 = m2,

then the isosceles triangles r13 = r23 form an invariant submanifold of the three-

body problem whose dynamics is called the “Isosceles three-body problem”. These

2-3 Isosceles triangles form a great circle in shape space which passes through both

Lagrange points, the binary point B23 , and the Euler point E1. If all three masses

are equal we have have three Isosceles subproblems represented by three great

circles on the shape sphere. Take one-half of each great circle, namely that half

whose endpoints are the two Lagrange points and which contains the Euler point.

In this way we form the concrete connection graph whose edges are Isosceles semi-

circles.

Observe that the shape sphere minus the three binary collision points retracts

onto the concrete connection graph. Theorem 1 follows immediately from this

observation and Moeckel’s theorem refered to above, once we know that the realizing

solutions of Moeckel’s theorem, projected onto the shape sphere, stay C0-close to

corresponding edges in the concrete connection graph. For details see section 6 of

this article or [30].

4. Metric Set-up. McGehee Blow-up

It is no more work to perform the blow-up for the N-body problem in d-dimensional

Euclidean space, rather than our special case of the three-body problem in the plane.

The d-dimensional N-body equations are:

(3) maq̈a = Σb 6=aFba , qa ∈ Rd

with the forces Fba as above.

4.1. Metric Reformulation. Let

E = (Rd)N
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Figure 5. The concrete graph, embedded in the shape sphere.

denote the N-body configuration space. Write points of E as q = (q1, . . . , qN ) and

think of the points as the N-gons in d-space. The masses endow E with an inner

product,

(4) 〈q, v〉 = Σmaqa · va

called the mass inner product. Here · denotes the standard inner product on Rd.

Then the standard kinetic energy is

(5) K =
1

2
〈q̇, q̇〉.
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Figure 6. The equilibria arising upon blow-up and relations be-
tween their stable and unstable manifolds. The purple and green
arrows are the rest cycles described in figure 5.

Let ∇ be the gradient associated to this metric: dfq(v) = 〈∇f(q), v〉, so that

(∇f)a = 1
ma

∂f
∂~qa

. Then the N-body equations take the simple form

(6) q̈ = ∇U(q)

where U is the negative of the standard potential V :

(7) U = −V = Σa<b
mamb

rab
,

the sum being over all distinct pairs a, b. As is well known, the total energy

H(q, q̇) = K(q̇)− U(q) = K(q̇) + V (q).
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is conserved, where “conserved” means constant along solutions. (Another synonym

for “conserved quantity” is “constant of the motion”.) We use

(8) r =
√
〈q, q〉

to measure the size of our configurations. Lagrange proved that

r2 = Σa<bmambr
2
ab/Σma

provided we are in center of mass coordinates: Σmaqa = 0. Then

r = 0⇔ total collision: all masses coincide

while

U =∞⇔ some collision: some pair of masses coincide.

Exercise 1. Use the metric reformulation of Newton’s equations eq (3), the fact

that U is homogeneous of degree −1 and Euler’s identity for homogeneous func-

tions to derive the “virial identity”, also known as the Lagrange-Jacobi identity:

d2(r2)/dt2 = 4H + 2U . Also show that 2H + U = H +K.

4.2. McGehee transformation via Energy Balance. The key property of the

potential energy −U , as far as McGehee’s transformation is concerned, is that it is

homogeneous of degree −1: U(λq) = λ−1U(q), or

q 7→ λq =⇒ U 7→ λ−1U.

Our guiding principle in deriving the McGehee blown-up equations is to require that

the kinetic energy K must scale the same as potential energy. so as to guarantee

that the total energy “balance” under scaling and has a scaling law. We call this

the principle of “energy balance”. Then it must be that K 7→ λ−1K. Since K is

quadratic in velocities v this implies that velocities v scale according to

v = q̇ 7→ λ−1/2v.
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How must time scale? Since dq 7→ λdq and v = dq/dt, we see that for a power law

scaling dt 7→ λadt to yield v 7→ λ−1/2v we must have a = 3/2. Summarizing, our

space-time scaling law must be

(9) q 7→ λq, dt 7→ λ3/2dt,

which induces the desired scalings

v 7→ λ−1/2v; (U,K,H) 7→ (λ−1U, λ−1K,λ−1H)

Exercise 2. Show that q(t) solves (6) if and only also qλ(t) := λq(λ−3/2t) solves

(6). Explain how the exponent −3/2 in this transformation-of-paths formula arises

from the +3/2 in the time part of the scaling law of eq (9). Show how this yields a

derivation of Kepler’s 3rd law.

McGehee’s genius was to rewrite Newton’s equations, as much as is possible, in

scale invariant terms. We cannot completely get rid of scale, but we can encode

scale in the single size variable r =
√
〈q, q〉 introduced earlier and through which

we remove scale from the remaining variables:

q = rs(10)

v = r−1/2y(11)

dt = r3/2dτ(12)

These relations define the McGehee transformation (q, v; t) 7→ (r, s, y; τ). Observe

that s lies on the unit sphere r = 1 in the configuration space,

s ∈ S = SdN−1 = {r = 1} ⊂ E

so that (r, s) are spherical coordinates on E. We sometimes refer to s as the shape

of the configuration q.
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Exercise 3. Write ′ for d
dτ = r3/2 ddt . Show that McGehee’s transformation trans-

forms Newton’s equations (6) to the equations

(13)

r′ = rν

s′ = y − νs

y′ = ∇U(s) +
1

2
νy

where ν = 〈s, y〉. These equations are the McGehee blown-up equations.

In the last equation ∇U(s) ∈ E is the same gradient as in Newton’s equation

(6), only restricted to points s of the sphere {r = 1}. The blown-up equations are

analytic and extend analytically to the total collision manifold r = 0. For N > 2

the equations still have singularities due to partial collisions eg r12 = 0, at which

∇U(s) still blows up.

Definition 1. The “extended collision manifold” is the locus r = 0 for the blown-up

phase space [0,∞)× S × RdN of McGehee.

The first of the three blown-up ODEs asserts that the extended collision manifold

is an invariant submanifold. On the extended collision manifold the flow is non-

trivial , as a glance at the last two equations shows. Away from the extended

collision manifold, the blown-up equations are equivalent to Newton’s equations.

What have we gained by adding this collision manifold?

4.3. Equilibria! The first thing one learns in a class in dynamical systems is to

look for equilibria. But Newton’s equations have no equilibria. N stars cannot just

sit there, still, in space. Adding the extended collision manifold through blow-up

introduces equilibria. When N = 3 these equilibria correspond to the solutions

of Euler and Lagrange described above. In the case of general N the equilibria

correspond to “central configurations”. See Proposition 1 below.

Finding the equilibria. From the first of the blow-up equations (13) we see that an

equilibrium must lie on the extended collision manifold r = 0 (consistent with what
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we just said about “stars cannot just sit there”). Plugging the second equilibrium

equation 0 = y − νs into the third equation of the blown-up equations (13) yields

the “shape equation”

∇U(s) = −1

2
ν2s.

Taking the inner product of both sides of the shape equation with s and using

Euler’s identity for homogeneous functions yields

U(s) =
1

2
ν2

or ν = ±
√

2U(s). Now the gradient of the function r2 at a point s ∈ S is 2s so

that we can rewrite the shape equation as

∇U(s) = c∇(r2), c = −1

4
ν2 = −1

2
U(s).

Think of c as a Lagrange multiplier. We have proved that the shape s of an

equilibrium configuration must be a “central configuration” where:

Definition 2. A central configuration is a shape s ∈ S which is a critical point of

U restricted to the sphere r = 1.

Conversely, for each central configuration shape scc ∈ S we obtain an equilibrium

point (r, s, y) = (0, scc, y) by setting y = νscc. with ν = ±
√

2U(scc). We have

established

Proposition 1. Equilibria of the blown-up equation are in 2:1 correspondence with

central configurations. This correspondence associates to a given central configura-

tion scc the two equilibria (r, s, y) = (0, scc, νscc), with ν = ±
√

2U(scc).

There is another way to arrive at central configurations in keeping with our

original discussion of the Euler and Lagrange solutions. Make the ansatz:

(14) q(t) = λ(t)s

where λ(t) is a time dependent scalar and s ∈ S is constant.
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Exercise 4. Show that the ansatz (14) satisfies Newton’s equations if and only if

s is a central configuration and λ(t) satisfies the “Kepler problem”:

(15) λ̈ = −µλ/|λ|3 µ =
1

2
ν2 = U(s)

All solutions of the one-dimensional Kepler problem eq. (15) end in collision

λ = 0 which corresponds to total collision under our anatz (14). The ansatz with

real scalar λ(t) yields the Lagrange and Euler solutions to the three-body equations

which we first described above in terms of “dropping” bodies and having their shape

remain constant.

4.3.1. The Euler and Lagrange family. Planar problems. Assume we are in the

planar case d = 2. Identify R2 with C: (x, y)→ x+ iy so that E = CN and so that

complex scalar multiplication of s = (s1, . . . , sN ) ∈ S ⊂ CN by λ ∈ C corresponds

to scaling the N-gon s by the factor |λ| while rotating it by Arg(λ).

Exercise 5. Show that ∇U(λq) = λ
|λ|3∇U(q)

Exercise 6. Use exercise 5 to show that exercise 4 also holds in the case of the

planar N-body problem, with now λ(t) ∈ C a complex scalar.

The solutions of exercise 6 are motions in which the N curves in the plane

qa(t), a = 1, . . . , N are all “homographic” to each other, meaning related by a

fixed scaling and rotation. Indeed λ(t) describes a conic and qa(t) = λ(t)sa are

all homographic to this single conic, the sa being the homography factor. We now

have, for each planar central configuration s, a family of solutions parameterized

by the complex solutions λ(t) to eq. (15), This family varies from total collision

solutions when λ(t) ∈ R to circular motions when λ(t) = eiωt ∈ S1 ⊂ C. For

fixed energy h we can think of the parameter of the family as being the angular

momentum J discussed below. J = 0 corresponds to the total collision solution

while the maximum and minimum values of J (at fixed H) are circular motions.
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4.3.2. Aside: An open problem. The potential U is invariant under rotations and

translations. Consequently, the central configurations as we defined them are not

isolated, but come in families.

Is the set of central configurations, modulo rotatations and transla-

tions, a finite set? This problem is attributed to Chazy [7]. See Albouy-Cabral

[2] for perspective and a recent survey.

What is known. Some History. N = 3: Euler and Lagrange had established

the complete list of central configurations as described here. N = 4: Simó did some

detailed numerical work in [43]. Albouy [1] classified the central configurations

in the case of 4 equal masses two centuries two decades and a few years after

Euler and Lagrange . One of his main achievements was to show that in the

equal mass case the 4-body central configurations all have a reflectional symmetry.

Eleven years after Albouy’s work Hampton and Moeckel [15] proved that the central

configurations are finite (less than 1856) N = 5: In 2012 Albouy and Kaloshin [3]

proved that for N = 5 and away from an algebraic surface in the parameter space

RP4
+ of mass ratios, the number of central configurations is finite. In 1999 Roberts

[38] constructed examples for N = 5, but with one of the five masses negative, in

which the set of central configurations is infinite, underlining the subtlety of the

problem.

4.4. Linear and angular momentum. Besides energy, the only known constants

of motion for the general N-body problem are the components of the linear mo-

mentum

P = Σmava

and the angular momentum

(16) J(q, v) = Σmaqa ∧ va

These momenta are intimately connected to the fact that the group G of rigid

motions acts by symmetries of Newton’s equations.
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Exercise 7. v ∈ E is orthogonal to the G orbit through q ∈ E if and only if P (v) = 0

and J(q, v) = 0

4.5. Center of mass frame. A well-know argument using the Galilean symme-

tries of boost and translation and found in any introductory physics text allows us

to suppose that all our solutions satisfy the linear constraints

P = 0 and Σmaqa = 0

In this case we say that we are in “center of mass frame” and we set

Ecm = {q ∈ E : Σmaqa = 0} ∼= Rd(N−1).

The infinitesimal generators of the translation action are the constant vector

fields (c, c, . . . , c), which we abbreviate as c~1, c ∈ Rd. We will call the span of these

vector fields the translation space. We compute that 〈c~1, q〉 = c · Σmaqa showing

that Ecm is the orthogonal complement to the translation space and consequently

realizes the quotient of E by translations. Observe that the total collision space

agrees with the translation space. Thus the only total collision point within Ecm is

the origin.

We can go to center of mass frame before or after blow-up, the result is the same,

namely the system of ODEs (13) restricted to the subvariety

(17) (r, s, y) = [0,∞)× Scm × Ecm ⊂ [0,∞)× S × E

where

Scm = {q ∈ Ecm : 〈s, s〉 = 1} ∼= Sd(N−1)−1.

4.6. Energy-momentum level sets and the Standard Collision Manifold.

Because energy and angular momentum are invariant as we flow according to New-

ton, by fixing their values h and J0 we obtain invariant submanifolds of phase

space:

M int(h) = {H = h, r > 0}
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and

M int(h, J0) = {H = h, J = J0, r > 0}

Energy and angular momentum are not defined at r = 0 so we have excluded r = 0.

Set

(18) M(h) = Closure(M int(h)), M(h, J0) = Closure(M int(h, J0)),

the closure being within the blown-up phase space. (The superscript “int” is for

“interior”.) We will need to understand the boundaries of these spaces, which is

their intersection with the extended collision manifold r = 0; in other words we

must understand how these invariant submanifolds approach the extended collision

manifold {r = 0} as r → 0.

The following notation will be useful in this endeavor.

Definition 3. [Notation] For F = F (q, v) a homogeneous function on E × E

write F̃ for the scale-invariant version of F achieved by multiplying F by r−α

where α is the degree of homegeneity of F with respect to our weighted scaling.

Thus: F (q, v) = rαF̃ (s, y).

According to “energy balance” both the potential energy, kinetic energy, and

total energy are homogeneous of degree −1. Thus

Ũ(s) = rU(q)

where Ũ is homogeneous of degree 0 and can be viewed as a function on the sphere

Scm. And

(19) H̃ = rH

where

H̃(s, y) =
1

2
〈y, y〉 − U(s) = K̃(y)− Ũ(s)
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and K̃, Ũ are homogeneous of degree 0. The angular momentum is homogeneous

of degree 1/2 so that

(20) J = r1/2J̃(s, y)

where J̃ is scale invariant and equals Σmasa ∧ ya.

If follows immediately from eq (19) that

∂(M(h)) = {H̃ = 0, r = 0}.

while using in addition eq (20) we see that

∂(M(h, 0)) = {H̃ = 0, J̃ = 0, r = 0}.

We give these submanifolds separate names.

Definition 4. The full collision manifold is M0 = {H̃ = 0, r = 0}.

Definition 5. The “standard collision manifold” is the locus

C := {r = H̃ = J̃ = 0}.

Exercise 8. Show that M0 and C are invariant submanifolds of the blown-up flow

by using eq (13) to show that

d

dτ
H̃ = νH̃.

d

dτ
J̃ = −1

2
νJ̃

hold everywhere on the blown-up phase space.

Thus the extended collision manifold contains the full collision manifold M0 which

in turn contains the standard collision manifold C and these are invariant subman-

ifolds. The equilibria all lie on C.

The following theorem is fundamental.
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Theorem 2. (Sundman) If r → 0 along an honest solution, then J = 0 for that

solution and hence that solution tends to C as r → 0. Moreover, the solution tends

to the subset of equilibria within C.

Here we are using the hopefully obvious

Definition 6. An “honest solution” to the blown-up equations is a solution such

that r > 0.

The honest solutions are just the reparameterizations of solutions to our original

Newton’s equations according to the blown-up time.

Remark. The standard collision manifold C is the space most authors refer to

when they speak of the “collision manifold” for the N-body problem. Chenciner

(see also [8]) argues that the standard collision manifold is the dilation quotient of

the N-body phase space.

4.7. Aside: Parabolic infinity. Set

u = 1/r

and view u = 0 as a neighborhood of infinity.

Exercise 9. Show that under the change of variables r 7→ u = 1/r, with s, y

unchanged the r′ equation becomes

u′ = −uν

with ν as before.

Now u = 0 becomes an invariant submanifold for the flow. We have there a kind

of dual to the theorem of Sundman above. First we need a definition.

Definition 7. A solution escapes parabolically to infinity as the Newtonian time

t → ∞ if its energy H = 0 and if in the limit the unrescaled kinetic energy K(v)

tends to zero as t→∞.
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Theorem 3. (parabolic) Every solution which escapes parabolically to infinity tends

to the subset of equilibria in the blown up variables (s, y).

There is one important difference to keep in mind now. Solutions with nonzero

angular momentum can and do escape parabolically to infinity, while no solutions

with angular momentum zero limit to the collision manifold.

5. Quotient by Rotations.

Newton’s equations and their McGehee blow-ups (eq 13) are invariant under

the group G of rigid motions and so descend to ODEs on the quotient space of

their phase spaces by G. Working on this quotient instead of the original helps our

intuition enormously in the case N = 3 and d = 2. We describe the quotient and

some aspects of the quotient flow for general N and d = 2.

The group G of rigid motions is the product of two subgroups, the translation

group and the rotation group. We have already formed the quotient of phase

space by translations when we went to center-of-mass frame, i.e. by restricting

to s, y ∈ Ecm. To form the remaining quotient by rotations it is much cleaner

to restrict to the planar case d = 2. Henceforth we assume that we are working

with the planar N-body problem, d = 2. We identify R2 with C as before. Thus

E ∼= CN and Ecm ∼= CN−1. Represent rotations as unit complex scalars u ∈ S1 ⊂ C

acting on (q, v) ∈ Ecm × Ecm by (q, v) 7→ (uq, uv) and on McGehee coordinates by

(r, s, y) 7→ (r, us, uy).

Definition 8. The blown up reduced phase space in the planar case is the quotient of

the blown-up center of mass phase space [0,∞)×Scm×Ecm ∼= [0,∞)×S2N−3×CN−1

by the group of rotations. Upon deleting the collision locus C we denote this quotient

by

PN = ([0,∞)× (S2N−3 \ C)× CN−1)/S1.

Let us begin to try to understand this quotient by momentarily forgetting the

velocities (v or y) and the fact that we deleted the collision locus C. The circle
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action sends a blown-up configuration (r, s) to (r, us), s ∈ Scm. So we need to

understand the quotient of the sphere Scm = S2N−3 by this action of S1. It

is well known that this quotient Scm/S
1 is isomorphic to the complex projective

space CPN−2 := P(Ecm) with the projection map Scm → Scm/S
1 being the Hopf

fibration. Hence the quotient of the (r, s) by S1 yields [0,∞)× CPN−2.

To better understand the meaning of points of CPN−2, work with a general

q ∈ Ecm, not necessarily a unit length vector. We insist only that q 6= 0 and allow

the scalar u to vary over the larger group C∗ ⊃ S1 of all nonzero complex numbers.

The resulting quotient is well-known to be (CN−1 \ {0})/C∗ = CPN−2. The action

of u ∈ C∗ on q ∈ CN−1 \ {0} is precisely the action of rotating and scaling the

(centered) N-gon q.

Definition 9. The projective space CPN−2 = P(Ecm) just constructed is called

shape space. Its points represent oriented similarity classes of planar N-gons.

We have realized the configuration part of the quotient after blow-up as [0,∞)×

CPN−2 where CPN−2 is the shape space. When N = 3 the shape space is the shape

sphere described above.

Collision locus.

The condition that a configuration q = (q1, . . . , qN ) represent a collision is that

qa = qb for some a 6= b, 1 ≤ a, b ≤ N . This condition is complex linear when viewed

in homogeneous coordinates [q1, q1, . . . , qN ] and so defines a complex hyperplane, a

CPN−3 ⊂ CPN−2. There are
(
N
2

)
pairs (a, b) and so we have to delete

(
N
2

)
hyper-

planes from our shape space. The union of these hyperplanes, viewed projectively,

is the collision locus:

C = {[q] = [q1, q2, . . . , qN ] ∈ CPN−2 : qa = qb some a 6= b}.

We use the same symbol for the collision locus before or after quotient.
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Accounting for velocities. In the last few paragraphs above we dropped the

velocity y. The quotient map (r, s) 7→ (r, [s]) from [0,∞)× Scm → [0,∞)×CPN−2

expresses [0,∞)× Scm as a principal S1 bundle over [0,∞)× CPN−2.

Now include the velocity y. The quotient procedure with y included is precisely

the procedure used to construct an associated vector bundle to a principal bundle.

(See for example [18] or [45].) Realizing this, we see that the quotient PN is a

complex vector bundle over [0,∞) × (CPN−2 \ C) whose rank is N − 1, its fiber

being parameterized by y ∈ Ecm ∼= CN−1. What is this vector bundle?

Proposition 2.

PN = [0,∞)× T (CPN−2 \ C)× R2

as a vector bundle over [0,∞) × (CPN−2 \ C). The final R2 factor can be globally

coordinatized by (ν, J̃) where ν = 〈s, y〉 represents the time rate of change of size

and where J̃ = 〈is, y〉 is also equal to r−1/2J off of r = 0 where J is the usual total

angular momentum of the system. The fiber variable tangent to shape space CPN−2

represents “shape” velocity.

In the case of N = 3 we have CPN−2 = CP1 = S2, the shape sphere previously

discussed in section 3. Then

P3 = [0,∞)× T (S2 \ C)× R2 = [0,∞)× R× (S2 \ C)× R3,

where

C = {B12, B23, B31}

is the set of three binary collision points.

5.0.1. Velocity (Saari) decomposition. Passing through a configuration q ∈ Ecm

we have two group-defined curves: the scalings λq, λ ∈ R of q and the rotations

uq, u ∈ S1 of q. The tangent spaces to these curves are orthogonal, and together

with the orthogonal complement of their span they define a geometric splitting of
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TqEcm = Ecm

TqEcm = (scale) + (rotation) + (horizontal )(21)

= Rq ⊕ iRq ⊕ {v : J(q, v) = 0, ν(q, v) = 0}(22)

where

Definition 10. The horizontal space at q is the orthogonal complement (rel. the

mass metric) of the sum of first two subspaces Rq and iRq, i.e it is the orthogonal

complement to the C-span of q.

Refer to exercise 7 and the definition of ν to see why the horizontal space at q is

the zero locus of J(q, v) and ν(q, v).

Unit vectors spanning the scale and rotation spaces are s and is. Consequently,

if we take a v ∈ TqEcm and decompose it accordingly we get

(23) v = 〈s, v〉s+ 〈is, v〉is+ vhor

and the scale invariant version:

(24) y = νs+ J̃ is+ yhor; ν = 〈s, y〉, J̃ = 〈is, y〉

where the subscript “hor” on v and y denote their orthogonal projections onto the

horizontal subspace.

Remark. Saari [41] pointed out the importance of the horizontal-vertical split-

ting of eq (23 ) in celestial mechanics. This splitting is thus often called the “Saari

decomposition” in the context of the N-body problem.

5.0.2. Proof of proposition 2. The decomposition (eq (24)) of y is S1-equivariant.

The coefficients of the first two terms ν and J̃ = 〈is, y〉 are S1-invariant functions

and so are well defined functions on the quotient PN . The horizontal term yhor ,

as y varies at fixed s, sweeps out the horizontal subspace at s and these subspaces,

as s varies, forms the horizontal distribution associated to a connection on the
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principal S1-bundle Scm → CPN−2. It is a basic fact about principal G-bundles

with connection that the union of the horizontal spaces for the connection forms

a G-equivariant vector bundle over the total space, and the quotient of this vector

bundle by G is canonically isomorphic to the tangent space to the base space.

Writing [s, y] to denote the S1-equivalence class of the pair (s, y) we see that the

set of all [s, yhor]’s forms TCPN−2. Now s, together with (yhor, ν, J̃) determine

y uniquely. It follows that the map [s, y] 7→ ([s, yhor], (ν, J̃)) is a vector bundle

isomorphism between the vector bundles (Scm × Ecm)/S1 and TCPN−2 × R2 over

CPN−2. The radial scaling coordinate r goes along for the ride, without any change.

QED

Because the decompositions of equations (23, 24) are orthogonal and the second

decomposition is scale invariant it follows that total kinetic energy decomposes as

(25)

K(q, v) =
1

2

ν2

r
+

1

2

J2

r2
+
Kshape([s, yhor])

r

=
1

r
(
ν2

2
+
J̃2

2
+Kshape).

The final term Kshape is formed by computing the squared length of the horizontal

factor yhor and is canonically identified with the kinetic energy of the standard

Fubini-Study metric on the shape space CPN−2.

Remark. The kinetic energy decomposition (25) shows that for J 6= 0 the

manifolds M int(H0, J) is already closed in PN so that

(26) M(h, J) = M int(h, J)

Indeed, the energy equation rh = H̃ shows that Ũ ≥ 1
2J

2/r + O(r) holds on

M int(h, J) which shows that if for a sequence pi ∈ M int(H0, J) we have that

r(pi) → 0 then U(si) → ∞ so that the shape si of these points pi are converging

to the collision locus C ⊂ CPN−2 on the shape space. But we deleted C in forming

PN .
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5.1. Euler-Lagrange family in reduced coordinates. What does a planar cen-

tral configuration family (section 4.3.1) look like in the blown-up reduced coordi-

nates of PN? We largely follow the exposition of Moeckel [28], section 2.

Let scc be a planar central configuration and [scc] ∈ CPN−2 the corresponding

point in shape space. For the associated central configuration family, the shape

does not change. In particular the shape velocity yhor = 0. Thus among our full

set of variables (r, [s, yhor], (ν, J̃)) of PN = [0,∞) × T (CPN−2 \ C) × R2 we have

[s, yhor] = [scc, 0] being constant, and only the variables (r, ν, J̃) change along the

solution curves of the family. This size r and angle θ of the curves in the family

specify the homography factor λ = λ(t) = reiθ where λ(t) solves the Kepler problem

as per exercise 6.

Since the shape does not change, the shape velocity yhor is identically zero along

each of these solutions and so Kshape = 0. Thus along such a solution

K̃ =
1

2
ν2 +

1

2
J̃2 =

1

2
ν2 +

1

2

J2

r

(see eq. (25)) But J̃ = r1/2J and J is constant along solutions so the change of r

and choice of J determines the change of J̃ . So we can think of the only variables

for the family as being ν, r.

Fix the energy h. We can then view the central configuration family as a one-

parameter family of curves in the (ν, r) plane, the parameter being the angular

momentum J . Indeed the energy equation reads:

rh =
1

2
ν2 +

1

2
J2/r − U(scc).

and since U(scc) is constant, this defines a one-parameter family of curves. We plot

these curves in the ν, r plane for various values of the angular momentum J below

in figure 5.1.

Observe the rest point cycle in this picture: the closed curve passing through

the two equilibria. This curve is the union of two solution curves, a top arch which

is an honest solution, and a bottom return curve lying in M0. The top arch lies on
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Figure 7. A central configuration family in ν, r coordinates. The
arch and ‘floor’ r = 0 comprise the rest cycle

M(h, 0) 4. and is the ejection-collision orbit described when we introduced central

configurations in section 2.2 by describing Lagrange’s solution: the orbit explodes

out of total collision along the shape scc achieves a maximum size and shrinks

back to triple collision. It connects the rest point R ∈ C having shape scc and

ν =
√

2U(scc) > 0 with the rest pointR∗ having shape scc and ν = −
√

2U(scc) < 0.

The bottom ‘return road’ lies on the full collision manifold {r = 0, H̃ = 0} = M0

and yields a return route from R∗ to R.

This rest point cycle is the limit of the family of the periodic central configuration

solutions with J 6= 0 as J → 0. It is important for later on that the return road

4Notational Convenience. We have just used the symbol M(h, 0) ⊂ PN for what used to be
a submanifold of the phase space before quotient. We will continue to use the same notation for

any G-invariant submanifold or function on phase space before or after the quotient procedure.
Thus we have:

C,M0,M(h),M int(h),M(h, J0), etc. ⊂ PN .
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DOES NOT lie on the standard collision manifold C, and that it does not consist

of rest points.

6. A gradient-like flow!

A flow is called “gradient-like” if it admits a continuous function f , which we

call a ‘Liapanov function’ which is strictly monotone decreasing along all solution

curves except for the equilibria. (See Robinson [39] p. 357.) The dominant aspect

of the flow on the full collision manifold M0 is that it is gradient-like with −ν as

Liapanov function. See Proposition 3 below.

Exercise 10. Use equations (13) to derive the identity

(27) ν′ = K̃ − 1

2
ν2 + H̃

(See for example Moeckel [24], eq. (1.6).)

Exercise 11. Use the “Saari decomposition” of kinetic energy (eq (25)) to show

that

K̃ − 1

2
ν2 = Kshape +

1

2
J̃2.

Conclude, using the previous exercise, that

(28) ν′ = Kshape +
1

2
J̃2 ≥ 0 on M0 = {r = 0, H̃ = 0}.

You have proved much of

Proposition 3. ν′ ≥ 0 everywhere on the full collision manifold M0. Moreover ν

is constant along a solution lying in M0 if and only if that solution is one of the

equilibria.

Remark.

Proof of proposition 3. In exercise 11, eq (28) you proved that ν′ ≥ 0. It

remains to show that any solution which lies on the locus where ν′ = 0 is in fact

an equilibrium. Eq 28 implies that ν′ = 0 if and only if Kshape = 0 and J̃ = 0.
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Now Kshape([s, y]) = 0 if and only if yhor = 0. So, ν′ = 0 if and only if both yhor

and J̃ = 0. But then the only nonzero term in the Saari decomposition of eq 24

is the real term so that y = λs with λ ∈ R. Take inner products with s to find

that λ = ν, or y − νs = 0 for any such point. Assume now that we have a solution

curve (s(τ), y(τ)) of such points in M0 lying on the locus ν′ = 0. Differentiating the

equation y(τ) = ν(τ)s(τ) using the blow-up equations we see that y′ = ν′s + νs′.

But ν′ = 0 by assumption and s′ = y − νs = 0 by the blow-up equations, so y′ = 0

along the solution: our curve is an equilibrium.

QED

Example 1. Return the central configuration family s = scc described in the earlier

subsection 5.1 and its limiting “return path” on M0 indicated in figure 5.1. From

rh = K̃ −U , U = U(scc), and Kshape = 0 we have that 0 = 1
2ν

2 + 1
2 J̃

2 −U(scc) or

1
2ν

2 + 1
2 J̃

2 = U(scc) for this return path. On the other hand ν′ = Kshape + 1
2 J̃

2 =

1
2 J̃

2. These equations yield two important conclusions : (1) the only rest points on

the family are at C where J̃ = 0. and (2) as we approach points along the return

path from the interior M int(h) we have that J → 0 and r → 0 in such a way that

J̃ = r−1/2J tends to a finite nonzero limit.

6.1. Making Moeckel’s manifold with corner into a manifold with a T.

In [28], at the beginning of section 2, Moeckel constructs a certain manifold with

corners in preparation for perturbing the heteroclinic tangles lying on M(h, 0) into

the realms of M(h, ε). (He denotes his manifold with a corner by M0+ and later

simply M .) Dynamics on this manifold-with-corners is essential to our proof of

theorem 1. I had a hard time making sense of this manifold so I rederived what

Moeckel did in a slightly different way. I get a “manifold with a T” instead of

Moeckels manifold with a corner. A “T ” is made out of two corners. One corner

is Moeckel’s manifold with a corner and the other is a reflection of it. The corner

itsel is our good friend C, the standard collision manifold. (Figure 6.1 .)

Recall that M(h) is a hypersurface in PN , and as such is a manifold with bound-

ary, whose boundary is our friend the full collision manifold M0 = {r = 0, H̃ = 0}.
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Definition 11. M̂(h) = M(h, 0) ∪M0 ⊂M(h).

M̂(h) is a codimension 1 subvariety of the smooth manifold with boundary M(h).

It is the zero locus of the function rJ̃ restricted to M(h) and as such has two

algebraic components : r = 0 which is our full collision manifold M0, and J = 0

which forms M(h, 0). The singular locus of M̂(h) is the intersection C = {r =

0, J̃ = 0} of these two components. All the rest point cycles described above

associated to the central configurations lie on this M̂(h). M̂(h) is comprised of two

“manifolds with corners”, namely {rJ̃ = 0, J̃ ≥ 0} and {rJ̃ = 0, J̃ ≤ 0}. The first

of these is Moeckel’s manifold with a corner.

M̂(h) is to be viewed as the limit as J → 0 of the manifolds M(h, J).

Proposition 4. For S ⊂ R a subset of the line of angular momentum values, set

M int(h, S) = ∪J∈SM int(h, J). Then M̂(h) = ∩ε>0M
int(h, (−ε, ε)).

The proof of the proposition follows in a routine way from our expressions

for scaled energy and angular momentum rh = H̃, J = r−1/2J̃ and the ki-

netic energy decomposition of eq (25). It is useful to recall, eq (26) that the

M(h, J) = M int(h, J) are closed for J 6= 0.

As an alternative to the description of the proposition, we can either let J → 0

from above or below. Set

M̂+(h) = lim
J→0+

M(h, J)

and

M̂−(h) = lim
J→0−

M(h, J).

Then one can show without difficulty that

M̂(h) = M+(h) ∪M−(h),

with M̂+(h) = {p ∈ M̂(h), J̃ ≥ 0} and M̂−(h) = {p ∈ M̂(h), J̃ ≤ 0} being the two

manifolds with corners described earlier, Moeckel’s manifold with a corner being

M̂+.
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Figure 8. M̂(h) inside M(h) is the zero level set of rJ̃ .

What is a manifold with a ‘T’? Suppose we have two real-valued functions x, y on

an n-dimensional manifold Q such that 0 is a regular value for both functions and

(0, 0) is a regular value of the map (x, y) : Q→ R2. Then the locus {xy = 0, y ≥ 0}

is a manifold with a T. Its singular locus is {x = y = 0}. A manifold with a T is

locally diffeomorphic to the product of the “upside down T” xy = 0, y ≥ 0 in the

xy plane, by an Rn−2. See figure 8.
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6.2. Finishing up the proof of theorem 1. The idea of Moeckel is that hy-

perbolic structures persist on perturbation, and that the various stable-unstable

connections between Euler and Lagrange central configuration points on M̂(h) are

sufficiently “hyperbolic” that they persist into M(h, ε) for ε 6= 0 small. Nonzero

angular momentum is needed to get orbits connecting from R’s to R∗ in finite time

since the rest cycle of figure 5.1 takes infinite blown-up time. Moeckel cannot carry

out the ‘perturbation of hyperbolic” idea literally because he cannot establish the

needed hyperbolicity or transversality. Instead, following an earlier idea of Easton,

he replaces hyperbolicity by a weaker notion of “topologically transverse” between

collections of “windows” transverse to the flow. This notion is sufficiently flexible

and stable to allow Moeckel to perturb the various formal connections to get actual

orbits realizing walks in the abstract graph introduced in section 3. By following

the details of his proof, three decades later, we were able to verify that his realiz-

ing solutions when projected onto the shape space do indeed stay C0-close to the

concrete connection graph as described in section 3.

The hypothesis of equal or near equal masses is needed to insure that (some

of) the eigenvalues for the linearization at the Euler equilibria are complex. This

complexity implies a “spiralling” of the Lagrange stable/unstable manifolds around

the Euler unstable/stable manifolds and is needed to insure that all connections in

the abstract connection graph are realized.

7. A conjecture. Non-existence.

Theorem 1 asserts the existence of a family of small-angular momentum solutions

which realize any given free homotopy class. What about our original problem,

described in subsection 1.1, of realizing clases for the angular momentum zero

three-body problem? The simplest classes of all are those which wind once around

a binary collision. They are represented by a curve in which two of the masses rotate

once around their common center of mass while the third body remains motionless,
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far away. We call these classes “tight binary classes”. Their syzygy sequence is ij

where i, j are the two moving masses.

Conjecture 1. There is no reduced-periodic solution to the equal-mass zero angular

momentum three-body problem which realizes a tight binary class.

We present four pieces of evidence supporting the conjecture.

1. Hyperbolic Pants.

2. (Not) Hanging out at Infinity.

3. Danya Rose’s Bestiary.

4. Failure of limits.

7.1. Hyperbolic Pants. Continue to take the masses all equal, but change the

potential from Newton’s 1/r potential to the ‘strong-force’ 1/r2 - the same one

investigated by Poincaré [?]. I proved in [?] that the tight binary class is not

realized by a reduced periodic solution of this modified problem.

7.2. Hanging out at Infinity. I tried to establish existence of tight-binary type

zero angular momentum periodic solutions of “Earth-Moon-sun type” using per-

turbation theory, following Meyer [21] as a guidebook. If they existed these would

be solutions in which 1 and 2 are far away, moving counterclockwise in an approx-

imate circle about their common center of mass while that center of mass moves

clockwise in a slow circle about mass 3. Such a motion could not realize a single

tight binary as a periodic solution in the inertial frame since there are many months

(1-2 circles) in a single slow year. But we only care about relative motion, so it

looks conceivable that such a motion could be reduced periodic, executing 1− 2 in

a single reduced period.

Connor Jackman, a UCSC graduate student, recently proven that this approach

cannot succeed [17]. To explain his result, we begin by investigating the relevant

Hill region. Fix the angular momentum to be zero and the energy to be some

negative constant. Project this codimension two energy-momentum level set onto

shape space to achieve the Hill region. If U is the negative of the potential so
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that H = K − U with K the kinetic energy and if we set H = −h < 0 then the

Hill region is the region for which U ≥ h. The result is depicted in figure 9. The

radial coordinate R in that picture is a measure of the overall size of the triangle.

From the picture we see that imposing a constraint of the form R > R0 for R0

large enough, breaks the Hill region into three components. Each component is

associated to a partition of the three bodies into a tight binary configuration and a

far mass. Insisting that R >> 1 is equivalent to insisting that in each component

one of the two distances is much smaller than the other two. That is, insisting

R >> 1 is the same as saying that we are working within the realm of perturbation

theory.

 

Figure 9. Cutting a ball from a pair of pants.

We can now state Jackman’s theorem

Theorem 4. Fix angular momentum zero, total energy to some negative constant.

Then there is an R0 > 0 (large) such that any solution (periodic or not!) which

begins in the region R > R0 must enter the region R < R0.
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Jackman’s theorem holds for any angular momentum, for any mass distribution

as long as the masses are all positive and any negative energy. The F0 will depend

on the masses, the angular momentum, and the energy.

As a corollary to the theorem, we see that there is no orbit having the pattern

described at the beginning of this section.

7.3. The Bestiary of Danya Rose. Danya Rose is a recent PhD [2015] from

Syndey, Australia, who worked under the direction of Holger Dullin. The heart

of his thesis is a systematic, very detailed numerical study of the equal-mass zero

angular momentum three-body problem which contains over 300 non-collinear, non-

isosceles solutions. These solutions are meticulously laid out in over 700 pages of

Appendix F of his thesis. I reproduce two sample pages here, below. He titles

this appendix “A bestiary of periodic orbits” . The Bestiary contains no solutions

which even come close to representing a simple tight binary.

The pages come in pairs, one of which contains an array of statistics of the

solution, and the other consists of four pictures, one being that solution drawn as

three curves in inertial space, another begin the corresponding curve on the shape

sphere, and a third being the curve viewed on the regularized shape sphere.

I describe some details of his search strategy so you can decide for yourself how

convincing the data is. At the end of this subsection, I reproduce two pages from

the Bestiary. The search proceeds in two basic steps. The first I call “gravitational

billiards” and relies crucially on the fundamental domain defined by the group

generated by the discrete symmetries available when the masses are equal. The

second step is a careful numerical integration on the regularized shape space.

7.3.1. Coding Gravitational billiards. When the masses are equal the problem ad-

mits mass interchange qi ↔ qj as a discrete symmetry. These symmetries are

involutions and generate the symmetric group on 3 letters acting on configuration

space by permuting the position coordinates. On the shape sphere the mass inter-

change involution qi ↔ qj acts as a half-twist about the binary collision ray rij = 0.
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We add to these involutions the reflection about any line in the plane which gener-

ates reflection about the equator on the shape sphere. Together these involutions

generate a 12 element group, the dihedral group D6 associated to a regular hexagon,

which acts on configuration space, mapping solutions to solutions. We used this

group to great advantage in [11].

The D6 action on configuration space induces an action on the shape space and

the shape sphere. A fundamental domain for the action on the shape sphere consists

of a spherical triangle whose vertices are a binary collision, say B12, a neighboring

Euler point, say E1, and the ‘upper’ Lagrange point, L+. See figure 10 where,

following Rose, we relabel these points B,M and E. The three edges are labelled

A, O and C. The edges A and O correspond to Acute and Obtuse Isosceles triangles.

C represents for collinear triangles.

Figure 10. A fundamental domain on the shape sphere, with labels.

The corresponding fundamental region on the shape space R3 is the inverse image

of this spherical triangle under central projection, intersected with the Hill region.

This shape space fundamental domain is an curvilinear (ideal) tetrahedron. See
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figure 11. The outer face of this tetrahedron lies on the Hill boundary, labelled

Figure 11. A fundamental domain on the shape space is a curvi-
linear tetrahedron.

“F” by Rose, F being for Freefall. It corresponds to the single face of the spherical

triangle under central projection. Three of the four vertices of the tetrahedron lie

on this face, one vertex being ideal, at infinity along the binary ray. The other two

vertices on this Hill boundary face correspond to the isosceles and Lagrange brake

initial conditions. The tetrahedron’s fourth vertex is triple collision, at the origin

of R3. The other three faces of the tetrahedron correspond to the three edges of

the spherical triangle. The three edges incident to triple collision continue to carry

the labels of their corresponding vertices in the spherical triangle.

We summarize Rose’s coding of the tetrahedral elements in the following two

tables.
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Table 1. Faces of the fundamental tetrahedron = Edges plus face
of fundamental spherical triangle

A Acute (Isosceles)
O Obtuse (Isosceles)
C Collinear
F Freefall (Hill Boundary)

Table 2. Relevant edges of Fundamental Tetrahedron = Vertices
of Fundamental spherical triangle

B Binary
E Equilateral (= Lagrange)
M Midpoint (= Midpoint)

A theorem of mine ([33]) asserts that any negative energy zero angular momen-

tum solution must repeatedly intersect “C”- collinearity, and hence cannot stay

inside the interior of a Fundamental domain for all time. Since such a solution

must hit ‘C’ we may as well start on C.

Inspired by this theorem, Rose starts off with initial condition on the collinear

face, and ‘shoots’ in to the domain by choosing velocities pointing in. He numeri-

cally integrates. That solution enters into the three-dimensional interior table and

leaves it through some other face. Instead of leaving, he can reflect that solution

back in, using the associated reflection of that face, and continue. Equivalently,

each time we hit a face, we apply Snell’s law to the associated vector, reflect it back

in to the region and continue by applying Newton’s equations to this new initial

condition. In this way, we get a billiard problem, on the tetrahedral “table”. The

trajectories bounce off the walls by the standard billiard reflection principle, and

move inside the interior according to the zero-angular momentum reduced Newton’s

equations.

For any such solution, we simply list the tetrahedral boundary elements hit, in

the order of hitting, as per the standard practice of symbolic dynamics. This list is

a word in the seven letters A,O,C, F, B, M, E. Rose calls this the orbit’s “sequence

type” The simplest realization of a tight binary would have sequence type COCO.
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Remark on Vertices. Following Rose, we ignore the vertices of the tetrahedron

in our listing. Here are some good reasons for ignoring the vertices. Two of the

vertices lying on the Hill boundary, correspond to the Lagrange and Euler homo-

thety solutions. They represent single known solutions The remaining vertex on F

is the ideal one of a binary collision in “free fall” . The corresponding “solution”

is a “hard binary”: an ideal motion in which two of the masses are eternally stuck

together in collision, falling in to the third mass. The final vertex is triple collision,

perhaps the most interesting, about which volumes have been written, including

the bulk of the present paper. But a periodic solution cannot hit triple collision.

Rose cuts off his integrations when they get too close to triple collision, so this

vertex is not relevant for Rose’s investigations.

We now copy two pages from the Bestiary. Following that we will explain a bit

about the regularized shape sphere and the integration method.

From DANYA ROSE’s BESTIARY, p. 163 , 164.

7.3.2. B-mode, Unstable: t0 (8, 5). Isotropy subgroup: {(I, 0), (τρσ2,
1
2 ), (τρs1,

1
4 ),

(σ2s1,
1
4 ), (s2,

1
2 ), (τρσ2s2, 0), (τρs3,

3
4 ), (σ2s3,

3
4 )}

Sequence type: (AΩCΩ′)4

Ω: OCACOACAOACACOA
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Tp = 67.01921804

Tr = 14.96879087

∆G = 12.36682876

∆φ = −8.57712227

W = 0.00000000

z1 =



−0.94542673

+1.08224817

+0.94542673

+1.17170924

−0.00000000

+1.17170924


z2 =



−1.41582468

+0.96447581

−0.00000000

+0.00000000

−0.00000000

+1.72244433


R1 = τρσ2s2 R2 = τρs3

λ =



+25.42672460 + 0.00000000i

+1.00000000 + 0.00000000i

+0.25229380 + 0.96765068i

+0.25229380− 0.96765068i

+1.00000000 + 0.00000000i

+0.03932870 + 0.00000000i


|λ| =



+25.42672460

+1.00000000

+1.00000000

+1.00000000

+1.00000000

+0.03932870


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−1

0

1
αj

τ
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7.3.3. Regularized Shape Sphere and Numerics. Binary collisions are a singularity

of the ODEs defining the three-body problem and create havoc with numerics.

Levi-Civita regularized a single isolated binary collision in the planar problem by

using a kind of branched cover over the collision point followed by a time change.

Lemâıtre extended what Levi-Civita did so as to apply to all three binary colli-

sions in a democratic manner. His work was followed up by Murnaghan, Waldvogel

who wrote several sets of explicit polynomial regularized equations. See also [31]

for a geometric perspective on the regularization maps with many pictures. Rose

integrates the reduced regularized equations as written down by Waldvogel, using

a symplectic integrator developed along with Dullin. Rose keeps track of when

and how solutions cross the various faces using an elegant idea due to Henon for

accurately computing Poincaré sections. An added bonus is that in a natural sys-

tem of coordinates, denoted α1, α2, α3 , the faces of the regularized fundamental

tetrahedron have a very simple description.

7.4. Failure of limits. What happens if we take the solutions guaranteed by our

theorem 1 and let the angular momentum J → 0? All of them limit to various

concatenations of Euler collision-ejection central configuration solutions joined at

triple collision. In other words: they all die in total collision.

Moeckel and I spend a few weeks trying to establish other hyperbolic-based ‘re-

turn mechanisms” in the spirit of figure 7 above which would work for J = 0. Such

a mechanism would have allowed us to construct the requisite symbolic dynamics

and thereby get existence of near-but-not collision periodic solutions having J = 0

and the desired reduced syzygy sequences. Our efforts repeatedly failed.
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[42] C. Simó, Analysis of triple collision in the isosceles problem, in Classical Mechanics and

Dynamical Systems, Marcel Dekker, New York, 1980.
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